Synopsis of Original Research Paper

Migration of Bone Marrow-Derived Cells and their Contribution to Collagen Production during Skin Fibrogenesis

Yutaka Inagaki

Research Unit for Tissue Remodeling and Regeneration, Tokai University School of Medicine

Skin fibrosis is characterized by an excessive deposition of type I collagen and other components of extracellular matrix. Several recent studies have shown that bone marrow (BM)-derived cells migrating into wounded skin produce type I collagen and may contribute to accelerating wound healing. It is unknown, however, whether BM-derived cells also participate in the progression of pathological skin fibrosis. In the present study, we utilized a transgenic mouse strain that harbors a tissue-specific strong enhancer sequence of $\alpha 2(I)$ collagen gene (COL1A2) linked to its proximal promoter and an enhanced green fluorescence protein (EGFP) reporter gene (COL/EGFP). Following a subcutaneous bleomycin injection, there were a large number of EGFP-expressing mesenchymal cells observed in the thickened dermis. BM cells obtained from COL/EGFP transgenic mice were transplanted into lethally irradiated syngeneic animals to replace their BM with COL/EGFP-positive cells. In those recipient mice, only a limited number of EGFP-positive BM-derived collagen-producing cells were observed in the fibrotic skin tissue following a bleomycin injection. These results therefore indicate that skin resident cells, but not BM-derived cells, are the major players producing collagen during skin fibrogenesis.